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This supplementary material provides additional de-
tails for our approach that were not included in the main
manuscript due to space constraints. Sections 1 to 6 present
additional qualitative results of our approach. Section 7
demonstrates a qualitative evaluation of the proposed per-
vertex loss. Section 8 includes the exact description of the
different architectures employed in our experiments. Sec-
tion 9 provides further details regarding our implementation.
Section 10 includes details relevant to our training proce-
dure. Finally, Section 11 focuses on extensive qualitative
evaluation and provides additional examples of the proposed
approach on images from the selected datasets.

1. Individual benefit for shape/pose
Most of the results from the main manuscript focus on

joint evaluation of pose and shape. To provide more insight
into which component is influenced more from our proposed
losses, we analyze further the results of Table 1 of the main
manuscript. Focusing on the outputs using parameter loss
and our proposed per-vertex loss, we provide further eval-
uations, using a) the predicted pose parameters and ground
truth shape parameters, and b) the predicted shape parame-
ters and ground truth pose parameters. The detailed results
are presented in Table 1. From these results we can eas-
ily infer that the benefit comes primarily from predicting
a more accurate pose. On the other hand, the shape influ-
ence in the final error is rather small and shape prediction
is only marginally improved when we adopt the per-vertex
loss. This demonstrates that 3D pose prediction is a very
challenging problem and one that is properly addressed with
the introduction of our per-vertex loss.

2. Additional ablatives for decision choices
To clarify and motivate some of our decision choices, we

provide here the results of additional ablative experiments.
Focusing on the setting of Table 1 of the main manuscript,
we do further exploration by:

• training without parameter loss and keeping only the
per-vertex loss active.

• ignoring the keypoint detection confidences of Hu-
man2D, and not using them as input to the PosePrior
network, as we currently do.

Pred GT shape GT pose

Parameter loss (rot matrix) 140.7 133.6 30.3
+ Per-vertex loss 120.7 114.9 29.9

Table 1: Effect of the proposed per-vertex loss on pose and
shape prediction individually. Most of the benefit comes
from better pose prediction, while the shape has only small
improvement. The numbers are mean per-vertex errors
(mm). The results are reported using UP-3D and correspond
to the setting of Table 1 of the main manuscript.

Alternative models Avg Error

Our model 117.7
- no parameter loss 125.9
- no keypoint confidence 124.7
- combined Pose/ShapePrior 156.1
- GT 2D input 79.9

Table 2: Additional ablative studies motivating some of our
decision choices. The numbers are mean per-vertex errors
(mm). The results are reported using UP-3D and correspond
to the setting of Table 1 of the main manuscript.

• using a single network for pose and shape prediction,
where the input is the channel-wise concatenation of
the heatmaps and the masks from Human2D.

• using ground truth 2D keypoints and masks as input to
the Priors networks.

The complete results for these experiments are presented in
Table 2. The results of the first three cases justify some of
our design choices, while the last experiment demonstrates
the potential upper bound for our approach.

3. Detailed results on SURREAL

In Table 3 we provide the results for all the actions of the
Human3.6M part of the SURREAL dataset [10]. This is the
extended version of Table 3 of the main manuscript. Our ap-
proach outperforms the other baselines across the majority
of actions and on average.
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Direct. Discuss Eating Greet Phone Photo Pose Purch. Sitting SitingD Smoke Wait WalkD Walk WalkT Avg

Lassner et al. [5] (GT shape) 145.4 118.1 166.0 152.9 175.2 213.8 150.1 288.7 271.2 446.9 194.7 172.1 267.9 154.4 171.1 200.5
Bogo et al. [2] (GT shape) 129.0 103.1 148.3 137.8 153.8 191.8 140.0 251.2 237.9 392.4 176.2 154.6 238.3 134.1 137.7 177.2
Ours (GT shape) 120.9 111.1 132.1 138.1 137.8 154.1 137.3 166.4 200.0 252.5 167.8 151.5 150.3 131.1 129.3 151.5

Bogo et al. [2] 155.6 129.9 172.0 165.4 180.0 214.6 166.6 273.5 265.3 409.3 204.7 179.0 259.6 157.1 161.5 202.0
Ours 126.1 118.1 136.0 143.4 140.9 156.8 141.2 170.9 200.9 253.4 171.6 156.5 154.6 137.7 133.7 155.5

Table 3: Detailed results on the Human3.6M part of SURREAL [10]. Numbers are mean per vertex errors (mm). For the first
three rows, the shape coefficients are known, for the last two rows they are predicted.

4. Detailed results on Human3.6M
In Table 4 we provide the results for all the actions of Hu-

man3.6M dataset [3]. This is the extended version of Table 4
of the main manuscript. Our approach outperforms the other
baselines across the majority of actions and on average.

5. Boosting SMPLify
The motivation for Section 5.5 of the main manuscript,

was to demonstrate the benefit of using our direct predic-
tions as an initialization and an anchor of iterative optimiza-
tion methods to accelerate them and improve their results.
Here, we provide more details on this aspect, by evaluating
the performance of our anchor itself, and exploring using
another direct prediction approach as an optimization an-
chor. For our experiments, we employed the direct predic-
tion approach of Lassner et al. [5]. Using this anchor lead
to slightly worse, yet comparable results with out approach.
However, the optimization became 10% slower, compared
to using our anchor, which indicates that our anchor was
more accurate to begin with. Indeed, by evaluating the an-
chors themselves on the same task of person and part seg-
mentation, we achieve significantly better performance with
our anchor. The results of our direct prediction are worse
than the ones obtained by SMPLify, since SMPLify explic-
itly optimizes for the 2D-3D consistency. However, this
sometimes comes in the expense of obtaining a non-coherent
3D pose (check also sample reconstructions of Figure 10).

6. Keypoint localization
Following the evaluation of the previous section, focus-

ing on the 2D aspect of our predictions, we also evaluate our
predictions on the task of the 2D keypoint localization on the
UP-3D dataset [5]. The complete results expressed in PCKh
are presented in Table 6. The comparison includes the ac-
curacy of our keypoint predictions from Human2D, as well
as the 2D keypoints resulting from projecting the 3D joints
of the body model on the 2D plane. Although the projec-
tion of the 3D joints is quite accurate, we observe that it still
falls slightly behind the network trained exclusively for 2D
keypoint localization. This observation is consistent with
other approaches that are trained for 3D pose consistency in
expense of highly accurate keypoint localization (e.g. [9]).
We also observed that the reprojections of the 3D joints can
perform more accurate 2D localization when we train longer

Front Back

Figure 1: Qualitative evaluation of the benefit of the per-
vertex loss. A human body model is visualized, where the
color of each vertex corresponds to the improvement of the
mean error of that vertex, after using a per-vertex loss for
training (compared to using only a vanilla parameter loss).
For the evaluation, we used all test examples of UP-3D. The
numbers are expressed in mm.

using the reprojection losses, but typically this can start hav-
ing a negative effect on the 3D reconstruction itself.

7. Qualitative benefit of per-vertex loss
For a qualitative evaluation of the proposed per-vertex

loss in comparison to simply using a loss only on the pa-
rameters, we visualize the parts of the human body that are
mostly influenced by this improvement. Starting with the
parameter loss as a baseline, in Figure 1 we visualize a hu-
man body model such that the color of each vertex repre-
sents the improvement of the mean error for this vertex after
we impose our per-vertex loss for training. For this evalua-
tion, we used all test examples of UP-3D. From the visual-
ization, we infer that the per-vertex loss has benefited mostly
the extremities of the human body (arms, legs, head), and in
particular the lower arms, where the decrease of the mean
error can even exceed the 50mm.

8. Architecture
The individual components of our architecture (i.e., Hu-

man2D, PosePrior, ShapePrior), are designed following
best practices from the literature, as we described in the
main manuscript. For completeness, here we present all the
details concerning the exact architectures used in our exper-
iments. In Figure 2, we present the basic architecture for
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Direct. Discuss Eating Greet Phone Photo Pose Purch. Sitting SitingD Smoke Wait WalkD Walk WalkT Avg

Akhter & Black [1]* 199.2 177.6 161.8 197.8 176.2 186.5 195.4 167.3 160.7 173.7 177.8 181.9 176.2 198.6 192.7 181.1
Ramakrishna et al. [8]* 137.4 149.3 141.6 154.3 157.7 158.9 141.8 158.1 168.6 175.6 160.4 161.7 150.0 174.8 150.2 157.3
Zhou et al. [12]* 99.7 95.8 87.9 116.8 108.3 107.3 93.5 95.3 109.1 137.5 106.0 102.2 106.5 110.4 115.2 106.7
Bogo et al. [2] 62.0 60.2 67.8 76.5 92.1 77.0 73.0 75.3 100.3 137.3 83.4 77.3 86.8 79.7 87.7 82.3
Lassner et al. [5] (direct) – – – – – – – – – – – – – – – 93.9
Lassner et al. [5] (optimization) – – – – – – – – – – – – – – – 80.7
Ours 59.3 61.8 70.6 68.0 91.0 80.1 59.7 64.2 89.1 124.4 77.3 68.8 73.0 70.5 71.6 75.9

Table 4: Detailed results on Human3.6M [3]. Numbers are reconstruction errors (mm). The numbers are taken from the
respective papers, except for (*), which were obtained from [2].

FB Seg. Part Seg.

acc. f1 acc. f1

SMPLify on GT 92.17 88.23 88.82 67.03

SMPLify 91.89 88.07 87.71 63.98
SMPLify + Lassner et al. anchor [5] 92.13 88.35 88.18 64.54
SMPLify + our anchor 92.17 88.38 88.24 64.62

Lassner et al. [5] anchor 86.66 79.93 82.32 51.02
Our anchor 89.51 84.57 84.68 55.47

Table 5: Accuracy and f1 scores for foreground-background
and six-part segmentation on LSP test set for different ver-
sions of SMPLify, the direct prediction of Lassner et al. [5],
and our direct prediction. The numbers for the first, second
and fifth rows are taken from [5]. Our approach performs
better than the direct prediction method of Lassner et al. [5]
and leads to faster convergence of the iterative optimization
when the two are employed as anchors for SMPLify.

PCKh

Human2D 94.6
3D joints projection 89.5

Table 6: Evaluation of 2D keypoint localization on the test
set of UP-3D. The numbers are PCKh scores. Since the Hu-
man2D network has been explicitly trained for the keypoint
detection, it performs better on this task, compared to pro-
jecting the 3D joint predictions on the 2D plane.

the hourglass module [7], while in Figure 3 we present Hu-
man2D, an adaptation of the stacked hourglass network, that
predicts both heatmaps for the joints and silhouette segmen-
tation. Regarding the Priors networks, Figure 4 illustrates
our PosePrior network, which was used for the prediction of
the pose parameters and includes two bilinear modules [6].
The ShapePrior network for shape parameter estimation is
presented in Figure 5 and consists of five convolutional lay-
ers and one bilinear module in the end.
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Figure 2: Schematic representation of the hourglass compo-
nent. Each column corresponds to three consecutive resid-
ual modules. The convolutions are implemented with 3× 3
kernels, and the number of channels remains equal to 256
across the hourglass. ReLU is the activation function, while
batch normalization is also used. The numbers at the bot-
tom of each column indicate the spatial resolution of each
level of the hourglass. At the encoding part of the hour-
glass, max pooling is used to decrease the resolution, while
at the decoding part, nearest neighbor upsampling is used to
increase the resolution. The skip connections also contain
residual modules, and their output is added element-wise to
the feature map of the decoding part after the nearest neigh-
bor upsampling procedure.

9. Implementation details

Regarding the transition from the Human2D network
to the PosePrior component, we need to transform the N
heatmaps (where N = 16) to the input vector of 3N values.
To get the pixel position of the joints, we use an argsoftmax
operation [11] on the heatmaps. Then, we shift the joint co-
ordinates, such that the root joint (pelvis) is on the location
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Figure 3: The complete architecture for Human2D, including the hourglass components. The orange columns are convolu-
tional layers, the red column corresponds to the input image, while the blue columns indicate the outputs (intermediate and
final) for heatmaps (corresponding to the N joints) and silhouettes (body and background channels). The green modules
correspond to the hourglass design from Figure 2. The numbers at the bottom of the columns indicate the number of channels
for each feature map. ReLU is the activation function, while batch normalization is also used. All layers are implemented as
residual modules with kernels of size 3× 3. The only exception is the first layer, which is a 7× 7 convolution, and the layers
that produce and post-process the outputs, which implement 1 × 1 convolutions. The spatial resolution starts at 256 × 256,
drops at 128 × 128 after the first layer (which uses stride equal to two), and then drops again to 64 × 64 after the second
module with a max pooling operation. This resolution remains constant until the end of the network (with the exception of the
interiors of the hourglasses).
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Figure 4: Detailed architecture for the PosePrior compo-
nent. The input is a vector of size 3N , containing the coordi-
nates of the 2D joint locations and the confidences of the de-
tections (realized by the maximum values of the heatmaps).
Then a fully connected layer brings the dimensionality to
1024. After that, two bilinear modules [6] follow. The archi-
tecture of each bilinear module includes two fully connected
(linear) layers of size 1024 with a skip residual connection
from the input to the output of the module. Finally, an addi-
tional fully connected layer brings the dimensionality to 72,
which is the output of the PosePrior component. After each
fully connected layer of size 1024, we use batch normaliza-
tion, ReLU, and Dropout.

(0, 0), and we scale them by dividing with the max absolute
value across all the x-y coordinates, such that the coordi-
nates are in the [−1, 1] interval. The max value of each
heatmap (which realizes an evidence for the confidence of
the detection) is also concatenated to these 2N values.

Concerning the differentiable rendering, we use a per-
spective projection model. For the supervision based on
2D annotations from in-the-wild images (described in Sec-
tion 4.3 of the main manuscript), the focal length is typically
not known and it is hard to be precisely estimated. For our
implementation, we use a standard value f = 5000. During
training, for a predicted 3D shape, we use this value to esti-
mate the global translation vector (camera extrinsics) which
asserts that our projected 3D shape will have the same ver-
tical extend as the annotated silhouette. Provided with these
parameters (focal length, global translation, 3D shape), the
renderer can handle the rest of the projection procedure.

10. Training details

For the training of the Priors networks, it is crucial to
augment the training with noisy inputs, to anticipate noisy
2D predictions from the Human2D network. This is a form
of data augmentation, which is typically used in the form
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Figure 5: Detailed architecture of the ShapePrior com-
ponent. Initially, the body segmentation is filtered with
five convolutional layers which are implemented as resid-
ual modules. The kernels are of size 3 × 3. The activation
is ReLU, while batch normalization is also used. Max pool-
ing is used after every module to reduce the spatial resolu-
tion. The numbers at the bottom of each module indicate
the number of channels for the feature maps, while the num-
bers at the top indicate the spatial resolution. After the last
convolutional layer, a fully connected layer brings the di-
mensionality to 512. Consequently, one bilinear module [6]
follows. The bilinear module includes two fully connected
layers with size 512 and a skip connection from the input
to the output. A final fully connected layer brings the di-
mensionality to 10, which is the output of the ShapePrior
component. After each fully connected layer of size 512,
we use batch normalization, ReLU, and Dropout.

of pixel-wise noise when training CovNets with images as
input. For the PosePrior component we add noise to each
coordinate (after centering and rescaling in [−1, 1]), sam-
pling from a Gaussian with µ = 0 and σ = 0.05. Given
the distance of each noisy keypoint from its original posi-
tion, we scale the input confidence value as well (where we
assign conf = 1 if the distance is 0, conf = 0 if the dis-
tance is 0.4 or greater, and we use linear scaling to assign
confidences for distance values within this interval). For the
ShapePrior network we add the more traditional pixelwise
noise to the input silhouette.

11. Qualitative evaluation

Because of space constraints, the main manuscript in-
cluded only a small sample of reconstruction examples for
our approach. Here we provide a more detailed qualitative
evaluation on the various datasets. Figure 6 collects suc-
cessful reconstructions of our approach on UP-3D [5] (ef-
fectively extending Figure 3 of the main manuscript). In
Figure 7, we compare the results of our approach with out-
put meshes from the direct prediction approach of Lassner et
al. [5] on the same dataset (extending Figure 4 of the main
manuscript). Concluding the evaluation on UP-3D, in Fig-
ure 8 we present some erroneous reconstructions made by
our network, which summarize the failure modes of our ap-

proach. Regarding the Human3.6M part of SURREAL [10],
we have collected a variety of outputs in Figure 9. The first
seven rows consist of successful reconstructions, while the
last row includes some error cases. In general, the low light-
ing and the challenging backgrounds are the cause of the
most common failures for this dataset. For Human3.6M [3],
we have collected in Figure 10 a subset of the failure cases
for the iterative optimization approach of Bogo et al. [2] and
compare it with our predictions for the same input images.
In the majority of these examples, the projected 2D pose
for [2] is correct, so the errors occur at the reconstruction
step (optimization). In contrast, our direct approach which is
discriminatively trained, predicts more faithful reconstruc-
tions, which even if they do not match exactly with the im-
age evidence, are in accordance with the 3D pose of the per-
son. Finally, in Figure 11, we provide additional examples
for the scenario (Section 5.5 of the main manuscript) that
our direct predictions are used as an initialization and an
anchor for the iterative optimization approach of Bogo et
al. [2] (SMPLify), leading to more accurate pose and shape
reconstructions (extending Figure 5 of the main manuscript).
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Figure 6: Successful reconstructions of our aproach on UP-3D [5] (extension of Figure 3 of the main manuscript).

Figure 7: Reconstructions on UP-3D [5] using our approach (blue) and the direct prediction approach of [5] (pink). Our
approach typically leads to more accurate and faithful reconstructions (extension of Figure 4 of the main manuscript).

Figure 8: A set of typical failure cases on UP-3D [5] for our approach. Reconstructions that do not match exactly to the 2D
image evidence, retrieval of a more regular pose, ignoring small scale details, errors in the global rotation, and failures because
of particularly challenging poses (e.g., with self-occlusions), are the main sources of error for our approach.
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Figure 9: Reconstructions of our approach on the Human3.6M part of SURREAL [10]. The last row corresponds to failure
cases, which are usually attributed to the low lighting conditions and challenging backgrounds.
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Figure 10: Reconstructions on Human3.6M [3] for our approach (blue) and the iterative optimization approach of Bogo et
al. [2] (pink). The optimization solution relies heavily on the 2D detections. Even small errors for the detected 2D locations
can lead to erroneous reconstructions (including flipping, interpenetration, failures because of depth ambiguity, etc). In these
cases our approach typically provides more reasonable results, even if they are not completely faithful to the image evidence.

Figure 11: Reconstruction on the test set of LSP [4] using vanilla SMPLify [2] (left of each image), and our anchored version
of the same algorithm (right of each image). Using our direct prediction as initialization and as anchor can help to get
reasonable 3D reconstructions and avoid unsatisfying failures (extension of Figure 5 of the main manuscript).
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