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This supplementary material provides additional details
that were not included in the main manuscript due to space
constraints. Sections 1 and 2 present some additional quali-
tative evaluations of our approach. Section 3 includes a de-
tailed description of the different architectures employed in
our experiments. Section 4 provides more details about the
training procedure we followed. Section 5 clarifies details
of our quantitative evaluation. Finally, Section 6 focuses on
extensive qualitative evaluation of our approach to comple-
ment the quantitative evaluation of the main manuscript.

1. Reconstruction component

To assess the effectiveness of ordinal depth relations for
3D human pose estimation, we evaluate our reconstruction
component using a) only 2D keypoints as input (i.e., [4])
and b) concatenating 2D keypoints and the ordinal depth re-
lations of the joints. Table 1 presents the results for the two
versions, where the architecture is the same and ground truth
2D keypoints and ordinal relations are used for training and
testing. The decrease of the average 3D error is indeed ex-
pected when we add ordinal depth information. However,
the level of improvement is quite significant, achieving rel-
ative error reduction greater than 30% when we include the
ordinal depth relations to the input. This comparison pro-
vides additional evidence that ordinal depth relations en-
code substantial information and can indeed boost the per-
formance of approaches that employ them (e.g. discrimina-
tive methods). We clarify here that our implementation of
the reconstruction prior for the comparison with the state-
of-the-art uses the predicted depth values zn from the initial
ConvNet as input, instead of the ordinal relations, however,
the ordinal depth relations can be a good indication of the
information that is encoded by the predicted zn values.

2. LSP+MPII Ordinal

Although LSP+MPII Ordinal is not appropriate for mm
level evaluation, we can still use it for empirical compari-
son by considering the agreement of the predicted ordinal
depth relations with the relative annotations provided by hu-
mans. To further stress the importance of image-based in-
formation for 3D reconstruction, which is explicitly lever-
aged by our method, we compare with two state-of-the-art
approaches that reconstruction 3D given only 2D correspon-

Input Avg Error

2D keypoints (GT) [4] 45.5
2D keypoints + Ordinal relations (GT) 31.6

Table 1: Evaluation on Human3.6M when a reconstruction
component is employed using a) only 2D keypoints as input,
or b) combining 2D keypoints with the ordinal depth rela-
tions of the joints. All inputs are the ground truth values.
The numbers are mean per joint errors (mm). The number
of the first row is taken from the respective paper. The ad-
dition of ordinal depth leads to a substantial relative error
reduction that exceeds 30%.

Human agreement rate6= (%)

Zhou et al. [12] 71.72
Bogo et al. [1] 73.06
Ours 85.86

Table 2: Human agreement rates on the ordinal annotations
of the LSP test set, for pairs annotated with an 6= depth rela-
tion. Our image-based ConvNet outperforms state-of-the-art
reconstruction approaches which employ only the detected
2D joints and rely on 3D body shape priors to resolve recon-
struction ambiguities and ignore additional image evidence.

dences, Zhou et al. [12] and Bogo et al. [1]. Similar to [1],
the input 2D joints for these methods are localized using the
DeepCut 2D pose detector [9]. The human agreement rates
for the test set of LSP dataset are presented in Table 2, where
the “neck” joint has been ignored, since the method of [1]
doesn’t produce an estimate for it. As we can see, our ap-
proach clearly outperforms both reconstruction approaches
on this metric. This indicates that by relying only on 2D
joint locations, reconstruction approaches are under-using
the available information and could potentially benefit from
the ordinal depth output of our ConvNet to produce more
convincing reconstructions.

3. Architecture

Our empirical evaluation focused on the benefit of the
supervision with ordinal depth, regardless of the particular
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representation (e.g. coordinate or volume regression), or ar-
chitecture. For completeness, here we provide more details
regarding the exact network architectures we used in our
experiments. As we described in Section 4.2 of the main
manuscript, the main building block for the majority of the
experiments is a hourglass module which follows the design
of [7]. The exact architecture of the hourglass module is
presented in Figure 1. For the experiments of Table 1 of the
main manuscript, we use the same component, and we only
change the output, i.e., we add a fully connected layer at
the end with N outputs for depth prediction, we add a fully
connected layer at the end with 3N outputs for coordinate
regression, we add a 1 × 1 convolutional layer to produce
N × 64 channels for the volumetric output. For the exper-
iment with the two hourglasses we adopt the coarse-to-fine
scheme of [8], to be compatible with them. We give more
details about this architecture in Figure 2. For the rest of
the experiments (Tables 2-7 of the main manuscript), this
stacked architecture is used as the base ConvNet, while the
reconstruction component is attached at the end (following
Figure 3b of the main manuscript). This component is a
simple multilayer perceptron similar to [4], while the exact
architecture is described in Figure 3.

4. Training details
For the experiments of Table 1 of the main manuscript,

comparing weak ordinal supervision with full 3D supervi-
sion, our weakly supervised versions are trained using only
the weak ordinal losses for each of the three cases (depth
prediction detailed in Section 3.1, coordinate regression de-
tailed in Section 3.2, and volumetric regression detailed in
Section 3.3). For the rest of the experiments (Tables 2-7
of the main manuscript), where we compare with the state-
of-the-art, we use a mixed training strategy (described in
Section 4.2 of the main manuscript). For the images com-
ing from the 3D dataset (Human3.6M or HumanEva-I), we
use full supervision for the output volume, while for the
images coming from LSP+MPII Ordinal, we calculate the
loss based on our weak ordinal loss (decomposed for 2D
keypoints and ordinal depth). The batches for training are
drawn randomly and can contain images from both sources.
Depending on the source of the image, the loss is calculated
accordingly. Regarding the reconstruction component, it is
trained independently using only MoCap data, as it is de-
scribed in Section 4.2 of the main manuscript. The whole
system combining the ConvNet and the reconstruction mod-
ule can also be refined end-to-end, but we found the effect of
this refinement to be marginal if both of the two components
are well trained.

5. Evaluation details
The results of Table 1 of the main manuscript are the only

case where the architectures do not include the reconstruc-
tion component at the end, since our focus is to compare the
type of supervision (weak with ordinal relations versus full
supervision). As a result, the ordinal depth predictions are
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Figure 1: Detailed architecture for the hourglass module.
The columns of the figure indicate residual modules which
enclose the convolutional layers. The kernels for the con-
volutions have size 3 × 3. The activation is ReLU, while
batch normalization is also used. For the encoding part,
max pooling (2 × 2) is used for the subsampling, while for
the decoding part, nearest neighbor upsampling is used for
the upsampling. The numbers below each column indicate
the resolution of the feature map at every stage of the hour-
glass. The green color of the encoding modules indicate
three consecutive residual modules, while the orange color
of the decoding part indicates one residual module. The skip
connections include also residual modules, and their output
is fused with the feature maps of the main pathway after the
upsampling, using element-wise addition. The number of
channels is constant across the hourglass, and equal to 256.

not “filtered” through the reconstruction component, which
helps producing a coherent 3D pose. In that case, to get met-
ric predictions of the depth with respect to the root joint, we
simply rescale the estimates of the ConvNet. In more de-
tail, after the training has finished, we apply our model on a
small set of the training data. Denoting with d̂ all the pre-
dicted depth values, and with d the corresponding ground
truth metric depths, we compute a scaling factor:

α =
max d−min d

max d̂−min d̂
. (1)

We use this scaling factor α to multiply the depth predictions
from our network and get depth in metric scale. Using the
predicted 2D location in pixel coordinates and assuming the
camera intrinsics are known, we can reconstruct the 3D pose
and be comparable with [8], that we use as a baseline here.

In Table 4 of the main manuscript we did not include in
the comparison the results from the work of Sun et al. [11]
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Figure 2: The detailed architecture used for the experiments with the two hourglasses. It has a coarse-to-fine scheme, where
the output of the first hourglass is effectively 2D heatmaps, while the output of the second hourglass is volumetric. The green
hourglasses have the design detailed in Figure 1, the orange columns are convolutional layers, the red column indicates the
input image, while the blue columns correspond to the heatmaps (in 2D form as intermediate supervision for the first hourglass,
and in 3D form as the final output for the second hourglass). The numbers on the bottom of each column indicate the number
of channels for the feature maps. The convolutional layers are implemented as residual modules with 3× 3 kernels. The only
exceptions are the first layer which is a 7 × 7 convolution, and the two layers after each hourglass, as well as the layers that
produce and post-process the outputs, that implement 1× 1 convolutions. The first layer uses stride equal to two, decreasing
the resolution from 256×256 of the original image to 128×128. After the second module, a max pooling decreases further the
spatial resolution to 64× 64, which remains constant until the end of the network (excluding the interior of the hourglasses).
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Figure 3: Detailed architecture for the reconstruction com-
ponent. The input is a vector of size 3N (estimated 2D
joint coordinates normalized in [−1, 1] and predicted ordi-
nal depth for N joints). Each column represents a fully con-
nected layer (linear layer), except for the first column that
corresponds to the input. The sizes of the fully connected
layers are 1024, except for the last layer that is of size 3N .
After each fully connected layer of size 1024, we use batch
normalization, ReLU, and Dropout. The final output is a
vector of size 3N , corresponding to the 3D pose coordinates.

(reported average error of 59.1mm), since the authors con-
firmed to us through personal communication that they use

the depth of the root joint to reconstruct the full 3D pose.
This makes the results not directly comparable with the rest
of the approaches on this Table. Under this setting, we
achieve even better numbers (53.0mm average error), but
this is comparable only with [11].

6. Qualitative evaluation

The main manuscript presented extensive quantitative
evaluation of our approach. Here we provide some addi-
tional qualitative results on the various datasets. Figure 4
collects successful reconstructions from Human3.6M [2],
using our state-of-the-art model from Table 2, 4 and 5 of the
main manuscript. Since we are using a mixed training strat-
egy for this dataset, including data from Human3.6M itself,
the failures are minimal (Figure 5). Most of them can be at-
tributed to erroneous 2D localization of the joints, challeng-
ing 3D poses, either because of heavy self-occlusions, or be-
cause of rarity in the training set (compared to the dominant
standing poses) while left-right flipping can also be a (rare)
source of error. Similar qualitative results are provided also
for HumanEva-I [10] in Figure 6, where the reconstructions
are even more accurate, because the same users appear in
both the training and test set.
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Besides these datasets, we also provide qualitative re-
sults for MPI-INF-3DHP [5, 6], where the domain shift is
significant compared to Human3.6M. Typical reconstruc-
tions for this benchmark are collected in Figure 7. In gen-
eral, the backgrounds are different from Human3.6M, the
subjects are acting with more freedom, no markers are at-
tached to them, and outdoor captures are also included.
The dataset cannot be considered truly in-the-wild, but we
emphasize that the model is reliable even if no data from
this benchmark has been used for training (as we detail in
the main manuscript, we use only data from Human3.6M
and LSP+MPII Ordinal). To underline the importance of
our ordinal annotations for the proper generalization of the
model, we compare the qualitative results of three different
models (following the quantitative evaluation of the main
manuscript in Table 3). These three models are trained us-
ing: a) only Human3.6M data for training b) Human3.6M
data and LSP+MPII images with supervision from 2D key-
points only, and c) Human3.6M data and LSP+MPII Ordi-
nal images with supervision from 2D keypoints and ordinal
depth annotations. The qualitative results of this comparison
are presented in Table 8, with the first three columns corre-
sponding to the first model. the next three columns to the
second model, and the last three columns to the third model.
Unsurprisingly, the Human3.6M model performs very un-
reliably, because of heavy overfitting on Human3.6M data.
Adding in-the-wild images with only 2D supervision im-
proves significantly the 2D aspect of the detector, but the
depth prediction is still mediocre. It is crucial to incorpo-
rate the ordinal depth annotations in the training procedure
to get a model that achieves reliable prediction both for 2D
keypoint locations and for depths of the joints.

Finally, for images that are considered in-the-wild, we
present qualitative results on the test set of the LSP
dataset [3] in Figure 9. The model in this case is similar
to the one we used earlier, with the exception that we used
no images from the LSP test set for training. Since in-the-
wild images with 2D keypoint and ordinal depth annotations
have been incorporated in the training (data from LSP+MPII
Ordinal), the 3D reconstructions are again reasonable.
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Figure 4: Successful reconstructions on Human3.6M [2]. For each example, we present the test image, and the predicted 3D
pose from the original view, and a novel view.

Figure 5: Erroneous reconstructions on Human3.6M [2]. For each example, we present the test image, and the predicted 3D
pose from the original view, and a novel view. The main failures can be attributed to joints that are not correctly localized on
the 2D image, poses that are very challenging, because of heavy self-occlusions, or because they are rare (compared to the
dominant standing poses of the training set), or to some rare cases with left-right flipping.

Figure 6: Qualitative results on HumanEva-I [10]. For each example, we present the test image, and the predicted 3D pose
from the original view, and a novel view.
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Figure 7: Qualitative results on MPI-INF-3DHP [5, 6]. For each example, we present the test image, and the predicted 3D
pose from the original view, and a novel view. We emphasize that our model has not been trained on this dataset.
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Figure 7 (cont.): Qualitative results on MPI-INF-3DHP [5, 6]. For each example, we present the test image, and the predicted
3D pose from the original view, and a novel view. We emphasize that our model has not been trained on this dataset.
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Human3.6M Human3.6M + 2D keyp Human3.6M + 2D keyp + Ord

Figure 8: Qualitative evaluation on MPI-INF-3DHP [5, 6], demonstrating the importance of ordinal depth annotations for
proper generalization. Each row corresponds to one image example, where we present the test image and the predicted 3D
pose for the three different models discussed in Table 3 of the main manuscript. The first three columns refer to the first
model (training with Human3.6M data), the three middle columns to the second model (training with Human3.6M data and
in-the-wild images with 2D keypoint annotations), and the last three columns to the third model (training with Human3.6M
data and in-the-wild images with 2D keypoint and ordinal depth annotations).
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Figure 9: Successful reconstructions on the test set of LSP [3]. For each example, we present the test image, and the predicted
3D pose from the original view, and a novel view.
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