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In this Supplementary Material, we will provide more
details that were not included in the main manuscript due
to space constraints. Section 1 provides more quantitative
results for our approach using additional datasets for train-
ing and evaluation. Section 2 extends the qualitative evalua-
tion of the main manuscript, providing more example recon-
structions, including both success and failure cases. Then,
Section 3 clarifies the settings of the empirical evaluation,
while Section 4 presents more details about the training pro-
cedure. Finally, in Section 5, we define the evaluation met-
rics employed in the quantitative evaluation.

1. Further quantitative evaluation
For the additional quantitative evaluation, we present

results using also the VLOG-People and InstaVariety
datasets [5] for training. The joints for these datasets are
provided automatically using OpenPose [1, 2, 8, 9], which
means that we leverage videos that provide only pseudo-
annotations for 2D joints. Similarly to our training in the
main manuscript, we use groups of five frames, where only
one contains 2D joints annotations, while for the rest we
only enforce the texture consistency loss. The data we used
before (i.e., Human3.6M and MPII video) is still used here.
We train two models, one with and one without the texture
consistency loss. We present results for different datasets,
i.e., Human3.6M (Table 1), LSP (Table 2) and 3DPW (Ta-
ble 3). Similarly to our findings in the main manuscript, the
version trained with the texture consistency loss is consis-
tently outperforming the vanilla model without this loss.

2. Further qualitative evaluation
In this Section we extend the qualitative evaluation of

Subsection 4.3 of the main manuscript, always employing
the network that is used to report results in Tables 3 and 4 of
the main manuscript. In Figure 1 we provide additional suc-
cessful reconstructions including novel viewpoints, which
are typically useful to assess the reconstruction quality of a
monocular approach.

Moreover, in Figure 2 and Figure 3 we provide examples
where our approach fails to recover a correct shape estimate.

P1 P2

Ours + data of [5] 51.5 49.2
Ours + data of [5] + texture 48.9 46.1

Table 1: Evaluation on the Human3.6M dataset (Protocols 1 &
2), using the additional data from VLOG-People and InstaVari-
ety. The numbers are mean reconstruction errors. We evaluate our
models trained with and without the use of texture consistency.

FB Seg. Part Seg.

acc. f1 acc. f1

Ours + data of [5] 91.75 0.87 88.83 0.66
Ours + data of [5] + texture 92.12 0.88 89.26 0.67

Table 2: Evaluation on foreground-background and six-part seg-
mentation on the LSP test set, using the additional data from
VLOG-People and InstaVariety. We evaluate our models trained
with and without the use of texture consistency.

Absolute Procrustes

Ours + data of [5] 157.0 107.5
Ours + data of [5] + texture 142.5 101.2

Table 3: Evaluation on the 3DPW dataset, using the additional data
from VLOG-People and InstaVariety. The numbers are mean per-
vertex errors without and with Procrustes alignment (‘Absolute’
and ‘Procrustes’ respectively). We evaluate our models trained
with and without the use of texture consistency.

These failures can give us intuition on the failure modes of
our approach and the ways we can improve upon it. Typi-
cal failures include cases with interactions between multiple
people, poses with increased level of self-occlusions, or or-
dinal depth ambiguities.
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Figure 1: Successful reconstructions of our approach (with the network that is used to report results in Tables 3 and 4 of the main
manuscript). For each example from left to right: Image, Our reconstruction result, Our reconstruction result from a novel viewpoint (top),
our reconstruction result from a novel viewpoint (side).

3. Experimental settings

In this Section we provide more details about our train-
ing and testing settings. Although we stressed it in the main
manuscript as well, we re-iterate here that although train-
ing happens with group of images, i.e., with frames from a
video or from different viewpoints of a time-synchronized
multi-view setup, at test time, our network takes a single
image and predicts the 3D body pose and shape for the per-
son in the image. In the following paragraphs, we clarify

some of the details for the different settings involved in our
experimental evaluation.

Human3.6M (monocular): This corresponds to the re-
sults reported in Table 1 of the main manuscript. The train-
ing includes sets of five consecutive frames from the Hu-
man3.6M dataset, as presented in Figure 4. The only differ-
ence for the various settings concerns the level of annota-
tions that each setting has available, or the level of supervi-
sion (loss terms) that we enforce. For the first row of Table
1, we handle each frame independently, applying a L2D loss
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Figure 2: Typical failure cases of our approach. Failures include
wrong orientation of the head, confusion because of multiple peo-
ple in the scene, and mis-alignment between the model and image,
particularly for the extremities.

Image Result Novel view

Figure 3: Further failure cases of our approach that require visual-
ization from a novel viewpoint to properly identify the error in the
reconstruction. Ordinal depth ambiguities and self-occlusions are
typically responsible for these failures.

and Ladv prior loss. This is equivalent to the “unpaired” set-
ting of [4], where we have no frame with 3D ground truth
and we have access only to 2D keypoints and an indepen-
dent set of 3D pose/shape parameters that we use to learn
an (adversarial) prior. For the second row, we keep the L2D

loss and Ladv prior terms, but we also add the texture consis-
tency term Ltexture cons between all pairs of images. We clar-
ify that Lshape cons is always used when we apply Ltexture cons,
so we do not mention it separately from now on. We also
stress that no additional annotation is available for this sec-
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Figure 4: Training procedure using the data from Human3.6M to
train with monocular video sequences. The figure corresponds to
the experimental setting of Table 1 of the main manuscript. For
each experiment of the ablative we provide different forms of su-
pervision to the network, i.e., only specific loss terms are active.
The details are clarified in the text (Section 3).

ond row, and we simply leverage a property of natural im-
ages to improve our supervision. This auxiliary supervision
provides further constraints for the recovered pose and im-
proves learning compared to a weak prior that only informs
us whether the recovered pose is valid or not. Finally, for
the third row, we use full 3D ground truth for supervision,
L3D, which is a parameter loss on the pose and shape pa-
rameters, as well as a per-vertex loss on the recovered mesh.
Since this is the most informative form of supervision, the
result of this setting acts as a lower limit of the performance
we can hope we can achieve with any form of auxiliary su-
pervision. Despite texture consistency comes effectively for
free from videos, we are able to improve significantly over
the initial baseline, and in fact it comes very close to the
lower limit set by full 3D supervision.

Human3.6M + MPII (monocular): For this second
experiment, presented in Table 2 of the main manuscript,
we keep images from Human3.6M using full 3D ground
truth, L3D, for supervision, but we also include in-the-wild
images from MPII in our training, with weaker annota-
tions/supervision. This means that we follow a mixed train-
ing strategy, where our batches include images from both
datasets. In Figure 5, we have focused particularly on the
different settings we use the in-the-wild MPII images, con-
sidering that this is the main factor changing in this abla-
tive experiment. Initially (row 1), we use only images from
Human3.6M with full 3D pose and shape ground truth as
supervision. This is the same experiment as the last row
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Figure 5: High level figure of the training procedure using the
data from MPII video. The figure corresponds to the experimental
setting of Table 2 of the main manuscript. For each experiment
of the ablative we provide different forms of supervision to the
network, i.e., only specific loss terms are active. The details are
clarified in the text (Section 3).

of Table 1, and serves as our initial baseline. For the set-
ting of row 2, we add images from MPII videos, but we
do not give access to any 2D keypoint ground truth. As
a result, only Ladv prior is active, which forces the network
to still produce valid poses, along with our texture consis-
tency Ltexture cons that adds more constraints to the output.
As we highlight in the main manuscript, this improves per-
formance for Human3.6M, but does not give us satisfying
results for in-the-wild images. For the next setting (row
3), we ignore video (i.e., remove consistency losses), and
instead we provide additional supervision through a key-
point reprojection loss, L2D, where the annotation is avail-
able only for one frame (middle) of the short video. This
performs better than the previous setting, which is expected,
since we explicitly added more annotations in our training.
Finally (row 4), on top of the keypoint loss for the middle
frame, we also add the consistency losses Ltexture cons for all
pairs of frames. Despite the fact that we only use unlabeled
data (i.e., neighboring frames with no annotations whatso-
ever), this setting further improves performance compared
to the previous experiment, since we capitalize on the tex-
ture consistency of the subjects.

Human3.6M (multi-view): For the multi-view setting,
which refers to Table 5 of the main manuscript, the train-
ing procedure is presented in Figure 6. This Figure visu-
alizes the training for a specific time instance, where we
have access to four viewpoints of the same subject. With
the exception of a small part of the training data (i.e., im-

ages of subject S1), in this setting we use no annotations
for the four views, other than the extrinsic calibration of
the multi-view system. Besides a pose prior loss Ladv prior,
we only enforce texture consistency through Ltexture cons and
mesh consistency through Lmesh cons, for all pairs of frames.

4. Training details

Our model follows the architecture of Kanazawa et
al. [4], where we only change the form of the output such
that we regress 3D rotations (for the pose parameters) using
the representation of Zhou et al. [10], instead of the axis-
angle representation employed by [4]. Our model is trained
using the Adam optimizer, with the learning rate initially set
to 3e−4, and reducing it by a factor of 0.9 every 100k itera-
tions. The batch size is set to 60, sufficient to accommodate
12 sets of short-sequences with five frames (temporal), or
equivalently 15 time instances captured by four viewpoints
(multi-view). Training with data from Human3.6M lasts for
400k iterations, while when training with data from Hu-
man3.6M and MPII, we increase the number of iterations
to 600k. When using the VLOG-People and InstaVariety
data as well, we further increase the iterations to 900k.

During training, the most computationally intensive pro-
cedure is visibility computation for all surface points of
the regressed mesh (or equivalently all texels of the texture
map). On a GeForce 2080 Ti GPU, a forward/backward
computation lasts for 3s when we need to compute visibil-
ity. The current implementation for visibility computation
relies on an efficient CPU implementation [6]. We exper-
imented with a GPU implementation based on raycasting,
but it was particularly memory intensive. A potential im-
plementation of the efficient algorithm of [6] on GPU could
further accelerate computation. Since the visibility com-
putation can be slow, we found it practical to activate the
texture consistency loss in the middle of the training proce-
dure, so that we can accelerate experimentation. Regardless
of the slow training time, at test time, a single forward pass
is very efficient, requiring less than 40ms.

5. Evaluation metrics

In this Section we discuss in more detail the evaluation
metrics used to report results in the main manuscript. Since
the segmentation metrics (reported in Table 4 of the main
manuscript) are quite common in the literature, while the
3D pose metrics (reported in all the other Tables) typically
incur more confusion, here we focus on the metrics that
evaluate 3D pose.

MPJPE: MPJPE stands for Mean Per-Joint Position Er-
ror and is proposed by Ionescu et al. [3]. Given a predicted
3D pose X̂ ∈ R3×k and a ground truth 3D pose X ∈ R3×k,
MPJPE involves computation of the average Euclidean dis-
tance over all the joints, after aligning the root joint (typi-



Input Frames CNN Predicted shape Mapped textureCanonical viewpoint

Ladv prior
<latexit sha1_base64="yM6tSygM/0vEacooRqYoyE2emr4=">AAAB/XicbVDLSsNAFJ34rPUVHzs3g0VwVZIq6LLoxoWLCvYBbQiTyaQdOnkwc1OsIfgrblwo4tb/cOffOG2z0NYDFw7n3Mu993iJ4Aos69tYWl5ZXVsvbZQ3t7Z3ds29/ZaKU0lZk8Yilh2PKCZ4xJrAQbBOIhkJPcHa3vB64rdHTCoeR/cwTpgTkn7EA04JaMk1D2/drAfsATLij3AieSzz3DUrVtWaAi8SuyAVVKDhml89P6ZpyCKggijVta0EnIxI4FSwvNxLFUsIHZI+62oakZApJ5ten+MTrfg4iKWuCPBU/T2RkVCpcejpzpDAQM17E/E/r5tCcOlkPEpSYBGdLQpSgSHGkyiwzyWjIMaaECq5vhXTAZGEgg6srEOw519eJK1a1T6r1u7OK/WrIo4SOkLH6BTZ6ALV0Q1qoCai6BE9o1f0ZjwZL8a78TFrXTKKmQP0B8bnDzsflbo=</latexit>

Ltexture cons
<latexit sha1_base64="NpEoJRq17ezvsb9sAgaQ1meJWmo=">AAACAXicbVA9SwNBEN2LXzF+RW0Em8UgWIW7KGgZtLGwiGA+IDnC3maSLNnbO3bnxHDExr9iY6GIrf/Czn/jXXKFJj6Y4fHeDLvzvFAKg7b9beWWlldW1/LrhY3Nre2d4u5ewwSR5lDngQx0y2MGpFBQR4ESWqEG5nsSmt7oKvWb96CNCNQdjkNwfTZQoi84w0TqFg9uunEH4QHjtEUaKA+UmUwK3WLJLttT0EXiZKREMtS6xa9OL+CRDwq5ZMa0HTtEN2YaBZcwKXQiAyHjIzaAdkIV88G48fSCCT1OlB7tBzophXSq/t6ImW/M2PeSSZ/h0Mx7qfif146wf+HGQoURguKzh/qRpBjQNA7aExo4ynFCGNci+SvlQ6YZxyS0NARn/uRF0qiUndNy5fasVL3M4siTQ3JETohDzkmVXJMaqRNOHskzeSVv1pP1Yr1bH7PRnJXt7JM/sD5/ABXMl0k=</latexit>

Loss terms

Lmesh cons
<latexit sha1_base64="m+VS5mt4knAskPcWKrYr6BHqeI0=">AAAB/nicbVBNS8NAEN34WetXVDx5WSyCp5JUQY9FLx48VLAf0Iaw2W7apZtN2J2IJQT8K148KOLV3+HNf+O2zUFbHww83pthZl6QCK7Bcb6tpeWV1bX10kZ5c2t7Z9fe22/pOFWUNWksYtUJiGaCS9YEDoJ1EsVIFAjWDkbXE7/9wJTmsbyHccK8iAwkDzklYCTfPrz1sx6wR8gipoeYxlLnedm3K07VmQIvErcgFVSg4dtfvX5M04hJoIJo3XWdBLyMKOBUsLzcSzVLCB2RAesaKonZ5mXT83N8YpQ+DmNlSgKeqr8nMhJpPY4C0xkRGOp5byL+53VTCC+9jMskBSbpbFGYCgwxnmSB+1wxCmJsCKGKm1sxHRJFKJjEJiG48y8vklat6p5Va3fnlfpVEUcJHaFjdIpcdIHq6AY1UBNRlKFn9IrerCfrxXq3PmatS1Yxc4D+wPr8AW1dlcc=</latexit>

CNN

CNN

CNN

CNN

(every pair of frames)

(every pair of frames)

(every frame)

Figure 6: High level representation of the training procedure using the data from Human3.6M to train with multi-view images. This Figure
corresponds to the experimental setting of Table 5 of the main manuscript. The details are clarified in the text (Section 3). Here, we
visualize the regressed mesh in the camera view and in the canonical orientation (assuming the same global orientation for all viewpoints),
along with the recovered texture mapped on the template shape. The missing (non-visible) texture for some viewpoints indicates that we
have recovered the texture from the back side of the subject.

cally the pelvis) of the predicted 3D pose with the root joint
of the ground truth 3D pose.

NMPJPE: NMPJPE or Normalized MPJPE is proposed
by Rhodin et al. [7] and is a normalized version of the pre-
vious metric, which allows us to align the scale of our pre-
diction with the scale of the ground truth 3D pose. This
typically allows us to ignore differences in the size of the
estimated skeleton, which are impossible to resolve anyway
for a monocular method.

Rec. Error: Reconstruction Error or PMPJPE (Pro-
crustes MPJPE) allows us to perform a Procrustes align-
ment with the ground truth skeleton before estimating the
per-joint error. This means that we can also ignore errors in
the global orientation of our estimate.
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