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In this supplementary, we provide material that could
not be included in the main manuscript due to space con-
straints. First, Section 1 provides additional details for the
exact representation of the volumetric space and the way we
can obtain metric pose estimates from the voxelized esti-
mates. Section 2 presents full results on Human3.6M us-
ing the reconstruction error for evaluation. Section 3 fur-
ther examines the decoupled architecture in the case the
groundtruth 2D joints are provided as input, while Section 4
focuses on quantitative evaluation on the MPII Human Pose
dataset using our volumetric representation. Finally, Sec-
tion 5 presents additional quantitative results and provides
insights about the failure cases or our approach.

1. Details of volumetric representation
As detailed in the main manuscript, in our definition

of the volumetric space, the x-y dimensions correspond to
pixel coordinates, while the z dimension corresponds to
metric depth with respect to the root joint. Let us assume
that the ConvNet predictions for joint i are [xi, yi, zi]. Given
the depth of the root joint, Zroot and the camera calibration
matrix, K, the metric position Si of joint i is computed as:

Si = (Zroot + zi)K
−1[xi, yi, 1]

>. (1)

This means that the reconstruction is recovered up to the
depth of the root joint, Zroot. If this information is un-
known, we propose to estimate it based on the expected size
of the skeleton by solving:

min
Zroot

∑
(i,j)∈S

(‖Si − Sj‖ − Lij)
2
, (2)

where S is the set of pairs of skeleton joints i, j that are
connected and Lij is the corresponding limb length. Ef-
fectively, problem 2 minimizes the discrepancy between the
limb lengths of the predicted 3D pose and the desired val-
ues Lij . This problem is convex and can be solved very
efficiently as there is only one variable.

Based on the available information during the reconstruc-
tion, we evaluate the following scenarios on Human3.6M:

• the depth of the root node is provided (depth root);

• Lij are given by the subject ground truth skeleton (per-
sonal skeleton);

• Lij are given by their mean values across training sub-
jects (universal skeleton).

The results for the different scenarios are presented in Ta-
ble 1. The performance difference is small and is justified by
the additional information provided in different scenarios,
e.g., the benefit of using a subject-specific versus a universal
skeleton. Other single view approaches require knowledge
of the root joint location (e.g., [2]). This is also a common
assumption among motion capture methods, e.g., [3], since
the root (pelvic) joint is usually easy to track [4]. We reiter-
ate that for the comparison with the state-of-the-art we only
compute an estimate of the depth of the root joint, based on
the univeral skeleton of each dataset, using the procedure we
described above.

2. Reconstruction error results on Human3.6M

In Table 5 of the main manuscript we presented quanti-
tative results for Human3.6M using the reconstruction error
for evaluation. Due to space constraints only the average
error was included. We extend these results here, by pre-
senting our performance for all actions in Table 2.

3. Decoupled with 2D groundtruth as input

In Section 4.4 of the main manuscript, the decoupled ar-
chitecture was applied directly on the image. An alternative
setting is to use the groundtruth 2D joints as input to the
component that is responsible for 2D-to-3D reconstruction.
This will give us an estimate of the ideally optimal perfor-
mance we can expect from the decoupled architecture. Ta-
ble 3 presents a comparison between this version of the de-
coupled architecture against the typical approach of using as
input a network’s predictions for the 2D joint locations. As
expected, using groundtruth 2D locations is beneficial com-
pared to the (possibly erroneous) predictions from another
ConvNet. Interestingly, the error reduction is not significant.
This indicates that the most challenging part of the predic-
tion is the 3D reconstruction, rather than 2D localization.
In fact, prediction is comparable to our Coarse-to-Fine ar-
chitecture trained end-to-end (69.77mm), demonstrating the
importance of using image-based evidence for the 3D pre-
diction, instead of relying exclusively on 2D joint locations.

1



Directions Discussion Eating Greeting Phoning Photo Posing Purchases
Universal skeleton 67.38 71.95 66.70 69.07 71.95 76.97 65.03 68.30
Personal skeleton 60.92 67.10 61.85 62.85 67.53 72.27 58.97 64.37

Depth root 59.32 64.87 59.48 61.25 65.12 69.02 57.06 60.14
Sitting SittingDown Smoking Waiting WalkDog Walking WalkTogether Average

Universal skeleton 83.66 96.51 71.74 65.83 74.89 59.11 63.24 71.90
Personal skeleton 79.84 92.88 67.03 60.95 70.97 54.05 57.65 67.07

Depth root 75.14 91.89 64.51 59.55 66.81 53.67 56.79 64.76

Table 1: Quantitative comparison of our approach on Human3.6M under various evaluation scenarios. The numbers are the
average 3D joint errors in mm.

Directions Discussion Eating Greeting Phoning Photo Posing Purchases
Ours 47.54 50.52 48.30 49.31 50.74 55.22 46.10 48.00

Sitting SittingDown Smoking Waiting WalkDog Walking WalkTogether Average
Ours 61.09 78.07 51.05 48.31 52.85 41.53 46.42 51.88

Table 2: Quantitative results of our approach on Human3.6M dataset. The numbers are reconstruction errors in mm.

2D Locations Network Predictions Groundtruth
Mean 3D error 78.10mm 67.87mm

Table 3: Comparison of the decoupled architecture on Hu-
man3.6M, where 2D joints are localized by a ConvNet or
their groundtruth location is used as input (extends Table 3
of the main manuscript).

4. Quantitative evaluation on MPII

Since MPII does not provide 3D pose groundtruth, we
focus on qualitative evaluation by presenting compelling 3D
reconstructions from in-the-wild images. Nevertheless, an
interesting quantitative experiment is to evaluate whether
the 2D localization accuracy of the decoupled architecture
is comparable to a ConvNet that has been trained explicitly
for the 2D localization task. For a fair comparison, we use
our decoupled architecture and we evaluate the localization
accuracy of the 2D heatmaps (output of the network compo-
nent trained explicitly for the 2D task), and the 3D heatmaps
(output of the 2D-to-3D reconstruction component using the
2D heatmaps as input and producing 3D heatmaps). The re-
sults for the MPII validation set are presented in Table 4.

Interestingly, the performance of both outputs is com-
parable. 3D heatmaps obtain similar 2D localization ac-
curacy with 2D heatmaps, with the advantage of provid-
ing the 3D reconstruction as well. Effectively, the 2D-to-
3D reconstruction component acts as a regularization on the
2D heatmaps, producing compelling 3D predictions given
the initial 2D estimates. The few failures that degrade 2D
localization performance can be attributed to challenging
poses which were not available in the 3D pose examples that
the 2D-to-3D reconstruction component was trained on. In
these challenging cases, the inference of the 2D-to-3D re-
construction component produces an alternative 3D predic-
tion which might deteriorate localization for some joints.

5. Additional qualitative evaluation
We provide additional qualitative results using the pro-

posed volumetric representation on a variety of examples.
The included images are from MPII (Fig. 1, 2, 3 and 4), Hu-
man3.6M (Fig. 5), HumanEva-I (Fig. 6), and KTH Football
II (Fig. 7). Finally, Figure 8 illustrates a qualitative com-
parison on Human3.6M between the “Decoupled” architec-
ture and our proposed “Coarse-to-Fine” architecture (as de-
scribed in Section 3.3 and evaluated quantitatively in Sec-
tion 4.4 of the main manuscript).

Besides presenting more examples, we elaborate here on
the failure cases, some of which are presented in Figure 4.
For datasets like Human3.6M, or HumanEva-I where 3D
groundtruth is available for end-to-end training, huge er-
rors are rare. They usually happen in cases of severe self-
occlusion (e.g., actions like Sitting Down) or concern the vi-
olation of structural constraints (e.g., inconsistent length of
symmetric limbs, joint angles exceeding angle limits). Since
the network learns the structure of the human body implic-
itly from data, and it is not explicitly penalized for structural
violations, these errors might be more common compared
to model-based approaches (e.g., [5, 1]. On the other hand
for in-the-wild images, the errors are more frequent. Novel
viewpoints, extreme 3D poses that are not present in our 3D
training examples and errors in the initial 2D localization
can lead the final predictions astray. Effectively, because
of the constraint of using only 2D joint locations for 3D
reconstruction, and the use of 3D data from a different do-
main (here MoCap data with less variability than in-the-wild
poses), we expect the final predictions to be less accurate
than the controlled cases of Human3.6M or HumanEva-I.

References
[1] F. Bogo, A. Kanazawa, C. Lassner, P. Gehler, J. Romero, and

M. J. Black. Keep it SMPL: Automatic estimation of 3D hu-
man pose and shape from a single image. In ECCV, 2016. 2

2



Ankles Knees Hips Wrists Elbows Shoulders Head PCKh
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Table 4: Localization accuracy on the MPII validation set using the standard PCKh metric for each joint and overall. The 2D
output of a network which has been trained explicitly for this task (“2D heatmaps”) is compared with the output of our 2D-
to-3D reconstruction component (“3D heatmaps”) where the same 2D heatmaps are given as input. The addition of 2D-to-3D
inference only slightly degrades 2D localization, while also producing a 3D prediction at the same time.
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Figure 1: Successful reconstructions on MPII - Example set 1. For each example, we present (left-to-right) the input image,
the predicted 3D pose from the original view, and a novel view. Notice the large variability in the image conditions and the
articulated poses of the subjects.
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Image 3D pose (original view) 3D pose (novel view) Image 3D pose (original view) 3D pose (novel view)

Figure 2: Successful reconstructions on MPII - Example set 2. For each example, we present (left-to-right) the input image,
the predicted 3D pose from the original view, and a novel view. Notice the large variability in the image conditions and the
articulated poses of the subjects.
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Image 3D pose (original view) 3D pose (novel view) Image 3D pose (original view) 3D pose (novel view)

Figure 3: Successful reconstructions on MPII - Example set 3. For each example, we present (left-to-right) the input image,
the predicted 3D pose from the original view, and a novel view. Notice the large variability in the image conditions and the
articulated poses of the subjects.

Image 3D pose (original view) 3D pose (novel view) Image 3D pose (original view) 3D pose (novel view)

Figure 4: Erroneous reconstructions on MPII. For each example, we present (left-to-right) the input image, the predicted 3D
pose from the original view, and a novel view. Failures can be attributed to challenging viewpoint, novel poses or severe
self-occlusions.
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Image 3D pose (original view) 3D pose (novel view) Image 3D pose (original view) 3D pose (novel view)

Figure 5: Qualitative results on Human3.6M. For each example, we present (left-to-right) the input image, the predicted 3D
pose from the original view, and a novel view. Notice the large variability of the articulated poses.
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Image 3D pose (original view) 3D pose (novel view) Image 3D pose (original view) 3D pose (novel view)

Figure 6: Qualitative results on HumanEva-I. For each example, we present (left-to-right) the input image, the predicted 3D
pose from the original view, and a novel view.

Image 3D pose (original view) 3D pose (novel view) Image 3D pose (original view) 3D pose (novel view)

Figure 7: Qualitative results on KTH Football II. For each example, we present (left-to-right) the input image, the predicted
3D pose from the original view, and a novel view.
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Image Decoupled (2D) Decoupled (3D) Coarse-to-Fine (3D) Image Decoupled (2D) Decoupled (3D) Coarse-to-Fine (3D)

Figure 8: Results on Human3.6M using the “Decoupled” architecture versus our proposed “Coarse-to-Fine” approach (see
Sections 3.3 and 4.4 of the main manuscript). For each example we present (left-to-right) the input image, the 2D and 3D
result of the “Decoupled” architecture and the 3D result of our “Coarse-to-Fine”. Failures for the “Decoupled” architecture
can be attributed to erroneous or ambiguous initial 2D joint localization, which can lead the predicted 3D pose astray. The
“Coarse-to-Fine” architecture instead uses image features end-to-end allowing the recovered 3D pose to rely on additional
image evidence beyond 2D joint locations.
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